
t ime change in the spacing h(t) between centers  of two light bands, one of which was between the 6 and 7 and 
the other between the 8 and 9 cyl inders  (counting f rom the top), is shown by curve 1 in Fig. 6b. 

Constants of the mater ia l  in application to a two-element  Voigt model were  f i rs t  obtained in creep tests  
for the computation: C~ : 7 .10  ~ N / m  2, C 2 = 6.105 N / m  2, Pl = 1.5" 103 N" s e c / m  2, P2 :: 2" 103 N. s e c / m  2. 
The result.s of the computation, per formed on the effect of the above-mentionod nonstationary pulse (for ~ = 0, 
h = 1.5 cm) in the form of the function h(t), a re  shown by curve 2. The beginning of the slot formation in the 
computation and the tests  agreed with high accuracy  and corresponds  to the value tk = 20 msec.  

The authors are  grateful  to S. S. Gr igoryan for attention to the r e sea rch  and for discussion. 
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A P O I N T  E X P L O S I O N  IN A C O M P R E S S E D  

M U L T I C O M P O N E N T  M I X T U R E  

A. M. M a s l e n n i k o v  a n d  V. S. F e t i s o v  UDC 534.222 

Among the various approaches to the study of the motions of a compressed  medium, a special  place is 
occupied by se l f - s imi l a r  methods for the solution of the hydrodynamic equations, making it possible to reduce 
the problem to the investigation of ordinary  differential equations. In [1] a scheme was developed for the ca l -  
culation of the se l f - s imi l a r  motions of an ideal gas in an incompress ib le  liquid in the case  of a s t rong point 
explosion; in [2] the methods of [1] were  general ized for the case of a s t rong explosion in a compress ib le  me-  
dium. Both pieces of work considered one-component  media. At the same time, the study of explosive motions 
in media consist ing of severa l  components is of considerable  in teres t  for pract ical  purposes.  

In order  that the problem of a s t rong point explosion in a compress ib le  medium be se l f - s imi la r ,  it is 
sufficient that the equation of state of the medium have the form 

= ~ �9 ( - - P / +  ~onst, (1) 
e(p,p) p, ~e0/ 

where  e is the internal energy; p and p a re  the p r e s s u r e  and the density,  respect ively;  P0 is a constant  with the 
dimensionali ty of density; and �9 is an a rb i t r a ry  function of its argument.  Direct ly f rom relat ionship {1) there  
follows the equation of the adiabat of the medium: 

p(p) ~ ~(s)x(p/e0), 

where S is the entropy. The connection between the functions ~ and • is determined by the formulas 

i {c fx(R) dR~, c exp~ dR r + j ~  j %(R)=%-~ R2~(R) (la) 

Moscow. Transla ted  f rom Zhurnal Prikladnoi  Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 105-109, 
March-Apr i l ,  1978. Original ar t ic le  submitted March 11, 1977. 
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In wha t  f o l l o w s ,  we  s h a l l  l i m i t  o u r s e l v e s  to an equa t ion  of  s t a t e  of the  f o r m  of (1), t ak ing  accoun t  of the  
m u l t i c o m p o n e n t  c h a r a c t e r  of the  m e d i u m .  At  the  i n i t i a l  m o m e n t  of  t i m e  t = 0, at  the  o r i g i n  of c o o r d i n a t e s  l e t  
the  e n e r g y  E 0 be  evo lved .  As  a r e s u l t ,  a s h o c k  w a v e  is  p r o p a g a t e d  o v e r  a m e d i u m  wi th  an i n i t i a l  d e n s i t y  Pl. 
W e  l i m i t  o u r s e l v e s  to the  c a s e  of a s t r o n g  exp lo s ion ;  we  n e g l e c t  the  p r e s s u r e  ahead  of the  s h o c k  f ront .  The  
p r o b l e m  is  t hen  s e l f - s i m i l a r ,  and a l l  the  q u a n t i t i e s  d e s c r i b i n g  the  m o t i o n  of t he  m e d i u m  wi l l  depend  only on 
the  one v a r i a b l e  X [1]: 

= r /r  D, rD = (Et%"9o) l/s,  E = Eo/ct,  (2) 

w h e r e  r D is the  r a d i u s  of the  s h o c k  f ront ;  t is  the  t i m e ;  and a i s  a p a r a m e t e r ,  d e t e r m i n e d  f r o m  the  cond i t ion  
of  the  e q u a l i t y  of the  t o t a l  e n e r g y  of  the  p e r t u r b e d  s u b s t a n c e  to the  e n e r g y  of  the  e x p l o s i o n  E 0. 

Us ing  the  s e l f - s i m i l a r i t y  of the  p r o b l e m ,  and i n t r o d u c i n g  the  d i m e n s i o n l e s s  p r e s s u r e ,  s p e c i f i c  v o l u m e ,  
and v e l o c i t y  u s i n g  the  f o r m u l a s  

v = av~V (~), 

4 
P =  25 

2 /" 

u = TT ( t  - -  a) U (i) ,  

r' t -  ap(~) ,  
(3) 

w e  c a n  ob t a in  a s y s t e m  of  t h r e e  equa t ions  fo r  the  func t ions  V(k), U(?,), and P(?0. The  quan t i t y  a in (3) is  t he  
d e g r e e  of c o m p r e s s i o n  of  the  s u b s t a n c e  at  the  s h o c k  f ront ;  vl  = 1/Pl .  

F o r  the  s u b s e q u e n t  c a l c u l a t i o n s ,  a c o n c r e t e  f o r m  m u s t  be  a s s i g n e d  to  the  func t ion  r  In  a c c o r d a n c e  wi th  
[3], u n d e r  the  a s s u m p t i o n  of t he  e q u a l i t y  of the  p r e s s u r e s  in  a l l  the  c o m p o n e n t s ,  t he  fo l lowing  equa t ion  is  o b -  
t a i n e d  fo r  a m u t t i c o m p o n e n t  m e d i u m .  F o r  t he  s p e c i f i c  v o l u m e  and s p e c i f i c  e n e r g y  of  a m i x t u r e  of  s u b s t a n c e s  
w e  have  

v ( p )  ---- ~z_~R~v~(p), E ( p )  ~= ~z_jRiE i (p) ,  (4) 
i i 

w h e r e  R i  is  the  we igh t  con ten t  of the  c o r r e s p o n d i n g  c o m p o n e n t s .  The  s u m  in (4) is  t a k e n  o v e r  a l l  the  c o m p o n e n t s  
of  t he  m i x t u r e .  W e  s h a l l  a s s u m e  tha t  the  c o n c r e t e  f o r m  of vi(p) is  d e t e r m i n e d  by the  T a t e  equa t ion  [3]: 

[ 'e~p , ] - ~ ,  <5) 
J v~(p) = vol !)%~c~ i 

where c0i is the speed of sound in the corresponding component; Ti is the adiabatic index. As has been shown by 
a number of authors [3, 4], an equation of state of this kind satisfactorily describes the behavior of such media 
as clay, water-saturated sand, etc., up to pressures on the order of a few kilobars. Taking account of (5) mud 
(la), for the internal energy of a multicomponent medium E(p) the following expressions can be obtained: 

E = ~ (q) [~  (q) - -  q] ,  
q [ B  

B { A  '--fl~-- ~ 7-~RiUoiB i {.Bq_ ~\?i--l]Ti ~'(q) 

A --= t ~ 71R~vc,,iB ~ p __ " ~  R ~ B I  ' 

(6) 

' T - - - q  , a ~ = a - - .  UO " 

:I 

F o l l o w i n g  the  m e t h o d  of  [2] and  t a k i n g  accoun t  of (6), a f t e r  c e r t a i n  t r a n s f o r m a t i o n s ,  the  s y s t e m  of  t h r e e  
equa t ions  fo r  V(~,), U(X), and P(~,) can  be  w r i t t e n  in t he  f o r m  

_, ] - - q  U q ( l - - a ) [ 2 ( l - - a ) U - i - t l ' + "  

~ ( i  - -  ~)[l__(i__a)U193__~U~.(l_a)~[.i.C~q_._/qV,q__fT]_c., . . . . . . . . . .  ~ - -  , * 

:- =7 [t --  (t -- a) UI [1 -- 4 (t --  a) U] -- q 
- - > - -  = 
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P r i m e s  denote differentiat ion with r e spec t  to the argument  q. The initial condition for Eq. (7) is 

q(t) =/-1(al), (8) 

where  f--1 is a function inverse  to f. The initial p r e s s u r e  q(1) cor responds  to the p r e s s u r e  q at the shock front. 

Equation (7) with the initial condition (8) was integrated by the R u n g e - K u t t a  method. 

For  a t rans i t ion  to dimensional  var iables ,  we need to know the value of a in formulas  (2). The law of 
conservat ion of energy,  wri t ten using (3), gives an express ion  for the pa ramete r  

l 

a = 25 a"V~" . V (~,) i 2 ' i - - - ~ J "  (9) 

The value of A* cor responds  to the posit ion of the boundary of the cavity. 

For  a concre te  calculation, quartz containing water  and air  was selected as the multicomponent medium. 
The constants entering into t h e  equation of state were  selected in accordance  with [5]. As the density ahead of 
the shockwave ,  t h e r e w a s  taken the density cor responding  to the external  p r e s s u r e  ahead of the front, Pl = 1 
kbar. 

To integrate Eq. (7), the initial value of the reduced dimensionless  p r e s s u r e  q must  be assigned, which, 
in accordance  with (8), is equivalent to the ass ignment  of the l imiting degree  of compress ion  a. However, the 
value of a for rock  and water  with an equation of s tate  of the fo rm (5) is unknown; therefore ,  a cer ta in  degree 
of a rb i t r a r iness  in its select ion must  be admitted. This is connected with the fact that the problem of a s t rong 
point explosion is posed for a medium with a previously assigned degree  of compress ion  at the shock front. 
With a = 1, we obtain the ear l ie r  problem of an explosion in an incompress ib le  medium [1]. For the case of a 
one-component  medium with a < 1, an analysis of the solution was made in [2]. For  a multicomponent medium, 
the value of a can be regarded  as the pa rame te r  of the problem,  which may be selected in severa l  ways,  taking 
account of different  mechanisms of the effect of additives of water  and air  on the cha rac te r  of explosive motions 
of the continuous medium. 

However,  we must  f i rs t  take note of an important  p roper ty  of the solutions of the differential equation 
(7). F igure  i gives curves  of P(A)/P2 ca l cu la t ed fo rqua r t z  with zero  mois ture  and gas saturation. Curve 1 c o r -  
responds to a = 0.9228, curve  2 to a = 0.8178, and curve  3 to a = 0.6773. The curves  point to a considerable  
dependence of the solutions of Eq. (7) on the degree  of compress ion  a. With a r i se  in the degree  of c o m p r e s -  
sion, i .e. ,  with an increase  in a, the dependence P(k) behind the shock front becomes smoother  and quali ta-  
t ively approaches the solution for a s t rong point explosion in a gas. On the other hand, curve 1, corresponding 
to a weak compress ion  at the shock front, has the charac te r i s t i c  features of the solution of the problem of an 
explosion in an incompress ib le  medium [1]. F r o m  Fig. 1 it can be seen that, at the center  of symmet ry ,  there  
is a cavity,  expanding in accordance  with a s e l f - s imi l a r  law. 

Equations (6) and (7) show that mois ture  saturat ion of the medium has an effect both on the value of the 
degree  of compress ion  a at the front and on the behavior of the thermodynamic  functions f and ~0 and their  de r i -  
vatives. In o rder  to br ing out the role  of each of these fac tors ,  two ways of select ing the pa rame te r  a can be 
proposed.  One of them consis ts  in the fact that, for the different cases  of gas and mois ture  saturat ion,  exactly 
the same value of the saturat ion a is taken. Thus, effects appear, connected with taking account of the gas and 
mois ture  sa turat ion behind the shock front and with neglect of the effect of the change in the degree  of com-  
p res s ion  at the shock front itself. 
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F i g u r e  2 g ives  two types  of c u r v e s ,  ob ta ined  for w e a k  (a = 0.95, c u r v e s  1-3) and s t r o n g  c o m p r e s s i o n  
(a = 0.75, c u r v e s  4-6) at the  shock  front .  The  ca l cu l a t ed  de pe nde nc e s  1 and 4 w e r e  ob ta ined  for  q u a r t z  not 
c o n t a i n i n g  i m p u r i t i e s ;  c u r v e s  2 and 5 w e r e  ob ta ined  for  q u a r t z  con t a in ing  1% w a t e r  by weight ;  c u r v e s  3 and 6 
w e r e  ob ta ined  for q u a r t z  c o n t a i n i n g  1.22 �9 10-3% a i r  by weight .  C u r v e s  1-3 show that ,  wi th  a s m a l l  d e g r e e  of 
c o m p r e s s i o n ,  i t  is e s s e n t i a l  to take  accoun t  of m o i s t u r e  and gas s a t u r a t i o n  in  the equa t ion  of s t a t e  of the m e -  
d ium.  The  effect  of even  s m a l l  amoun t s  of w a t e r  o r  a i r  l eads  to a s i t ua t i on  in  which  the  change  in  the  p r e s s u r e  
wi th  the  p a r a m e t e r  X b e c o m e s  smoo the r .  F o r  a l a r g e  c o m p r e s s i o n ,  the effect  of i m p u r i t i e s  of gas or  w a t e r  is 
l e s s  s ign i f i can t .  

Ano the r  s e l e c t i o n  of the  p a r a m e t e r  a ma ke s  it p o s s i b l e  to take accoun t  of the  change  in  the  d e g r e e  of 
c o m p r e s s i o n  as a func t ion  of the con ten t  of w a t e r  or a i r  in  the  m e d i u m  and ,  s i m u l t a n e o u s l y ,  to take  account  
of the  m u l t i c o m p o n e n t  n a t u r e  of the p r o b l e m  in  the equa t ion  of s ta te .  F o r  th is  p u r p o s e ,  the p r e s s u r e  P2 was  
f ixed at the  shock  wave  and the p a r a m e t e r  a was  ca l cu l a t ed  us ing  the f o r m u l a  a = v(P2) / y(p 1) [ e x p r e s s i o n  (6) 
was  u sed  for v(p)]. The  r e s u l t s  of so lu t i on  (7) wi th  such  a s e l e c t i o n  of a a r e  g iven  in  F igs .  3 and 4. F i g u r e  3 
i l l u s t r a t e s  the c a l c u l a t e d  dependences  P(X) /P2  for  a d i f f e r e n t  con ten t  of w a t e r  in  q u a r t z  [1) a = 0.8640, R w = 0; 
2) a = 0.8582, R w = 0.01; 3) a = 0.8525, R w = 0.02; 4) a = 0.7920, Rw = 0.15]. F i g u r e  4 g ives  c u r v e s  of p(,k)/p2 
[1) a = 0.8640,  Rw = 0; 2) a = 0.8365,  R w = 0.05; 3) a = 0.7920, R w = 0.15; 4) a = 0.6320,  R w = 1.00]. The  
g r e a t e r  c o m p r e s s i b i l i t y  of w a t e r  and a i r  in  c o m p a r i s o n  wi th  q u a r t z  l eads  to an  a p p r e c i a b l e  d e c r e a s e  in  the  
va lue  of a, even  for  a s m a l l  m o i s t u r e  con ten t  (the add i t ion  of 1% w a t e r  l eads  to a d e c r e a s e  in  the  va lue  of a 
by a p p r o x i m a t e l y  10%). T h e r e f o r e ,  wi th  a r i s e  in  the con ten t  of w a t e r  in  the  m e d i u m ,  t h e r e  is a r ap id  d e c r e a s e  
in a, which (physically) means a transition to the problem of an explosion in a strongly compressible medium. 
This can be seen directly from the similarity of Figs. 1 and 3 for small values of a. A consideration of a gas- 
saturated medium leads to analogous conclusions. 

Analyzing the results of the calculations, the following conclusions can be drawn. With a relatively small 
compressibility (a > 0.9), the effect of moisture and gas saturation of the medium on the development of a 
strong point explosion is due both to a change in the thermodynamics of the medium and to a change in the 
compressibility at the shock front. For large degrees of compression (a < 0.85), the last of the above-named 
mechanisms becomes the principle one. Thus, taking account of gas and moisture saturation leads to a less 
sharp drop in the pressure behind the shock front. This can be seen directly in Figs. 2 and 3. 

The dependences p(l)/p2, illustrated in Fig. 4, have a somewhat different character. In the case of the 
solid component alone, the density behind the shock front falls rapidly to its initial value and then remains 
practically unchanged, which is in good agreement with the known fact of the weak compressibility of the sub- 
stance behind the shock front. With a rise in the moisture and gas saturation of the medium, the drop in the 
density becomes smoother, and the medium remains compressible far behind the shock front. 

The above-described picture of the behavior of the pressure, the velocity, and the density leads to an 
increase in the specific energy of the medium behind the shock front, which results in a sharper damping of 
the shock wave itself with distance, i.e., a decrease in the peak pressures with a rise in the content of water 
and gas at identical distances from the point of the explosion. Mathematically, this follows from the form of 
the curves in Figs. 3 and 4 and formula (9), reflecting the law of conservation of the energy of the explosion 
E 0. In accordance with (9), with a rise in the content of water and gas, the parameter ~ rises sharply-, and the 
effective energy of the explosion E falls, since, from (2), E = E0/~. 

We note that the results obtained are in qualitative agreement with the conclusions of [6], whose authors 
studied the problem of the expansion of the cavity in a multicomponent medium. 

The authors wish to express their thanks to E. E. Lovetsldi for a number of valuable observations. 
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D E T E R M I N A T I O N  OF E J E C T I O N  E X T R A C T I O N  W I T H  T H E  

E X P L O S I O N  O F  AN U N D E R G R O U N D  F U S E - T Y P E  C H A R G E  

IN  A T W O - L A Y E R  M E D I U M  

N. B. I I ' i n s k i i  a n d  A. V. P o t a s h e v  UDC 624.131-'539.215 

In [1], in a pulsed-hydrodynamic  s ta tement ,  an investigation was made of the problem of determining the 
ejection extract ion with the explosion of a fuse- type d ischarge  in a two- layer  medium. This problem is solved 
below with more  general  assumptions.  

Let the ground consis t  of two layers  of identical density,  differing in the values of the cr i t ical  velocity. 
The upper layer  with a thickness H is cha rac te r i zed  by the cr i t ical  velocity v 1, while the lower layer ,  of un- 
bounded thickness ,  has the cr i t ica l  velocity v 2. At a depth h f rom the sur face  of the ground, there  is a fuse-  
type charge ,  modeled in the ver t ical  plane by a source  with a power of 2q. It is requi red  to determine the 
l imit  of the ejection extract ion,  taking account of its lines of flow, and taking v = v 1 behind it in the upper layer  
and v = v 2 in the lower layer ,  where  v is the value of the velocity. We note that, in distinction f rom a s o l i d -  
liquid model of an explosion (see, for example, [2, 3]), in the present  work,  as in [1], the condition v > v 0 (v 0 
is the cr i t ica l  velocity) is not imposed in the region of the motion. Only such ejection schemes are  considered 
in which the point of branching of the boundary of the ejection extract ion lies below the line of separat ion of the 
layers .  Depending on the ra t io  of the cr i t ica l  velocit ies v 1 and v2, two variants  are  studied. 

Variant 1. Let v 1 < v 2. The corresponding scheme of the ejection extract ion is i l lustrated in Fig. 1 (by 
vir tue of the s y m m e t r y  with respec t  to the y axis, only the r ight-hand half of the ejection extract ion is shown; 
this region is denoted by G z and its boundary' ABMN-RCDA, by Fz). We note that the condition l y 0 ! --- H 0 (Y0 is 
the value of y at the point B) is c lear ly  satisfied if h >_ H. The s tar t ing pa rame te r s  of the problem are  q, h, H, 

vl, and v 2. 

We introduce dimensionless  variables  by the relat ionships 

z* = z / H ,  w* = w/q ,  v* = vH/q ,  (1) 

where  z = x + iy is the physical  plane; w(z) = ~ * ir is the complex flow potential. The solution will then depend 
only on three  pa rame te r s :  

h*  = h / H ,  ~'~= r l H / q ,  v2 = v.2H/q, 

since H* = 1, q* = 1. In what follows, for s implici ty,  we shall omit the superscr ip t  a s te r i sk  for the dimension-  
less var iables .  

The problem descr ibed reduces to the following boundary-value problem: Determine the unknown sections 
of the boundary F z of the region Gz in such a way that the function w(z) = #0(x, y) + ir y), analytical in Gz and 
continuous in G z (except for the point A), will sat isfy the following conditions at Fz: 
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